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Summary 

Decision Alternative Ratio Evaluation (DARE) analysis is one technique for developing car- 
dinal scale risk ratings of hazardous waste alternatives. Although no procedure can resolve all the 
difficulties of evaluating hazardous waste risk, DARE offers several distinct advantages including 
the elimination of unmanageable conservativism, the accomodation of information uncertainty, 
and the dimensional independence to integrate across diverse hazard types. In this paper, the 
DARE analysis of uncertain “raw” information is developed using probabilistic set membership. 
It is demonstrated that, although this introduces fallibility into the analysis, it provides a practical 
method for reducing the non-uniqueness observed in existing DARE procedures based on bounded 
fuzzy set membership. 

1. Introduction 

The analysis of hazardous waste risks poses extremely difficult problems. 
People (including experts) can seldom agree on the appropriate hazard set. 
Normally the candidates are numerous, and span the full range from obvious, 
acute, point hazards to distributed, chronic, nearly undetectable, and some- 
times completely metaphysical dangers. In addition, people seldom agree on 
how the likelihood (probability) of hazard realizations should be quantified. 
From human toxicology to structural dynamics, the techniques of associating 
probabilities with hazards are thoroughly debatable. Most hazardous waste 
technologies are also quite new. We simply don’t have a long history (success- 
ful or otherwise) from which to extract data. Finally, even if the individual 
risks of hazards can be quantified (risk =f(probability ) xf( severity ) ) there is 
seldom agreement on how to composite these values into a final ranking or 
rating. 

It is also very difficult to coalesce the contrivances of all hazardous waste 
risks into one comparable set of units. Aesthetic and environmental degrada- 
tion simply cannot be expressed in terms equivalent to human morbidity or 
mortality. This is very unlike cost analysis where dollars play a nondebatable, 
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unifying role. Although people will argue about the cost or value of all elements 
of an economic analysis, they normally do not debate the procedure of sum- 
ming dollars to evaluate the final result. This is not the case with risk. As 
William Lowrance ( 1976 ) has pointed out, people are extremely “human” when 
it comes to the mathematics of risk. What may be computationally equivalent 
risks will seldom be perceived of as equals. Lowrance (1976) went on to de- 
scribe 10 factors that are essential to risk perception, and capable of defying 
conventional mathematics. Risks entered into voluntarily such as occupa- 
tional or recreational exposures will be perceived as being less important than 
an equal amount of involuntary exposure. Unavoidable risks such as driving 
an automobile are often perceived of much differently than luxury exposures 
such as flying. Nearly all controversies involving hazardous wastes fall into the 
“dread hazard” category dominated by emotional over rational behavior. This 
has had a profound impact on the evolution of hazardous waste management 
in the 1980’s. 

All of this substantially compounds the evaluation of hazardous waste risks. 
Waste management technologies can be sophisticated, the potential dangers 
are numerous, the availability of incontrovertible data is limited, and the very 
thought of hazardous waste invokes strong personal emotion. The author is 
not aware of any solution for all of these quandaries, but Decision Alternative 
Ratio Evaluation (DARE) (Klee, 1971) offers compelling advantages over 
many existing techniques. Principal among these are the formalized structure 
imposed on the problem statement, the elimination of unmanageable conser- 
vativism, the incorporation of information uncertainty, the integration of non- 
dimensional rankings across diverse hazard types, and the generation of re- 
sults that may be meaningfully composited into final cardinal scale ratings. 

Jennings and Sholar (1984 ), and Jennings and Suresh (1984)) describe de- 
terministic DARE-based techniques for developing risk penalty functions for 
hazardous waste planning. Jennings and Suresh (1986a) extended the tech- 
nique to analytical solutions for the “fuzzy information” problem. By this pro- 
cedure the extreme rating possibilities may be constructed about risk ratings 
that are fuzzy due to uncertain information known to fall within a bounded set 
of possibilities. Because of the substantial increase in computational complex- 
ity, the algorithms have been formulated for user-interactive microcomputer 
implementation (Jennings and Suresh, 1986b). 

The purpose of this paper is to extend DARE analysis into the regime of 
“fallible” solutions, It will be illustrated that, although the ratings computed 
from bounded-set fuzziness by the algorithms of Jennings and Suresh (1986a) 
are infallible, they can also be quite conservative. If one is willing to introduce 
a small probability of error, several alternatives for expressing information 
uncertainty may be introduced and the bounds about implied fuzzy risk ratings 
can be substantially reduced. Intuitively it may seem that the introduction of 
error is not an improvement. In reality, any hazardous waste risk analysis is 
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at its very best only an approximation. It will be illustrated that the introduc- 
tion and control of the possibility of error can be used to resolve problems of 
apparent non-uniqueness and distinguish these from truly non-unique fuzzy 
DARE ratings. 

2. DARE analysis for bounded set fuzziness 

The mathematics of DARE analysis for deterministic information are rela- 
tively straightforward. This is not to imply that their implementation is sim- 
ple. Everything about hazardous waste problems is complex and debatable. 
Identifying a tractable set of “raw” information can be extremely difficult. 
However, once the information demands of DARE analysis have been satis- 
fied, the actual solution procedure adds little additional burden. 

DARE risk analysis may be applied to any set of decision variables (e.g. 
alternative site locations or alternative management technologies) consider- 
ing any desired set of weighted decision criteria (depth to water table, toxicity 
of wastes, proximity of populations, etc. ). Here “raw” information implies the 
definition of decision variables and criteria as well as the data necessary to 
compare them. This may be any desired combination of primary information 
such as laboratory or field measurements and/or the results of existing spec- 
ialized methods for comparing hazardous waste activities (see Booz-Allen Ap- 
plied Research, 1973; Gabor and Griffith, 1980; Hallstedt et al., 1986; Harris 
et al., 1984; Jones, 1977/78; Klee, 1976; Pack et al., 1987; Pavoni et al., 1972; 
Petts et al., 1987; Wu and Hilger, 1984; etc.). More mechanistic, problem-spe- 
cific models can also be applied to yield “raw” DARE information. This high 
degree of flexibility results from the nondimensional cardinal ratings com- 
puted for each decision criterion. 

The DARE analysis procedure may be generalized as follows: 
l Let I be the number of decision variables and J be the number of decision 

criteria to be applied to these variables (I=_ 1, Jd 1). 
l Let Wj be a nondimensional weight assigned to each decision criterion. 

0.0 < w; d 1.0 Vj= 1, J (1) 

c w, = 1.0 (2) 

l Let U, be the magnitude ratio of the state variable (<j) quantifying the jth 
decision criterion for the Ch decision variable relative to the (i+ 1 )th variable. 

(3) 

0.0 < Uij < W (4) 

U,j =1.0 (5) 
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Equation (5) fills the final row of the matrix U with an element passive to 
hierarchy construction and is required because the hierarchy for each criterion 
is uniquely defined by (I- 1) ratio evaluations. The constraint of eqn. (4) 
states that no alternative may be infinitely more or less preferable than any 
other alternative. From this “raw” information, the implied hierarchy may be 
constructed and normalized as follows. 

H, = ~ Uij Vi=l,I; j=l,J (6) 

~ij =~ij,=Hij Vi= 1,1; j= 1,J (7) 
i 

The final cardinal scale rating vector R may then be computed as 

Ri = CFLj W; Vi= 1,I (8) 

or simply, 

R=FW (9) 
The computations are more complex when the raw information is fuzzy. 

Fuzziness implies that for some reason (precision of measurements, paucity of 
data, incomplete understanding of phenomena, honest skepticism, etc.) it is 
not possible to specify deterministic values for decision variable attribute ratio 
comparisons. However, given that one can place finite bounds on the magni- 
tude of the required values, (subject to the constraints of eqns. (2 ) , (4) and 
(5)) 

Wj<Wj<Wf Vj= l,J (10) 

U, <Oij<U$ Vi=l,(I-1) ; Vj=l,J (11) 

infallible bounds about the implied ratings may still be computed. 
For the ith decision variable, the composition of the fuzzy evaluation matrix 

(0) required to extremize its ultimate rating may be assembled from pre- 
scribed combinations of the extreme element values. 

f7ij (IIlaX)’ 
U$ Qk=i,I; j=l,J 
U, Vk=l,(I-1); j=l,J 

Vi= 1,1 (12) 

~ij (min)i 
U, Vk=i,l; j=l,J 
U; t/k=l,(I-l));j=l,J 

Vi= 1,1 (13) 

For the special case of fuzzy evaluations subject to deterministic weights, the 
implied ranking bounds may be computed by eqns. (14) and ( 15). 

Ri(max) = [pi(max)‘lTW Vi= 1,I (14) 

Ri (min) = [@i(min)i]TW Vi= 1,1 (15) 



307 

The vectors p;i (max ) i and Pi (min ) i are the jth row of the fuzzy hierarchy ma- 
trices_#(min)‘and#(max)icomputedbyeqns. (6) and (7) usingthe U(max)i 
and U( min )’ matrices respectively. All these computations must be repeated 
for each decision variable. 

DARE computations become more complex when weights are also fuzzy. 
Algorithms sufficient to unravel the fuzzy weighting problem, are presented in 
Jennings and Suresh (1986a) and will not be reiterated here. Let. it suffice to 
say that infallible ranking bounds may still be computed if the correct adjust- 
ment is made to weighting vector, I@. 

Ri (max) = [Pi (max)‘lT( W(min) + W(max)i) Vi=l,I (16) 

Ri (min) = [Pt ( min)‘lT( W(min) + W(min)i) Vi= 1,I (17) 

Again, all calculations must be repeated for each of decision variables. The 
number and complexity of the calculations argue convincingly for a computer 
implementation, Jennings and Suresh (1986b) document microcomputer codes 
designed for this purpose. 

3. Example “infallible” solution for bounded set fuzziness 

For the purpose of illustration and comparison, the following “infallible” 
DARE solution is offered. The results are infallible in the sense that if the raw 
information is correct, the implied fuzzy ratings must fall within their com- 
puted bounds. The problem is presented in generic form since only the mag- 
nitude of t.he numbers are significant to this discussion. This does, however, 
correspond to the example of Jennings and Suresh ( 1986b ) for eight hazardous 
waste technologies evaluated for five general classes of hazard. 

Assume that 5 decision criteria G= 1,5) have been identified and assigned 
the fuzzy weights indicated in Table 1. Also assume that 8 decision variables 
(i= 1,8) have been evaluated to yield the pairwise nij bounds of Table 2. 

Bounded-set DARE yields the infallible rating bounds presented in Table 3. 
These bounds are illustrated graphically in Fig. 1. Note that although one could 

TABLE 1 

Example fuzzy decision criteria weight bound assignments 

Criteria 

0’) 
W,- Mean w,+ Deviation 

1 0.0900 0.10 0.1100 (*lo%) 
2 0.1125 0.15 0.1875 (&25%) 
3 0.1800 0.30 0.4200 (?40%) 
4 0.1125 0.15 0.1875 (&25%) 
5 0.1800 -0.30 0.4200 (Ik40%) 
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TABLE 2 

Example fuzzy decision alternative ratio evaluation information 

Variables Ratio evaluation bounds for decision criteria [U, - U$ ] 

j=1 j=2 j=3 j=4 j=5 

i=l 1.350-1.650 1.275-1.725 0.180- 0.420 0.170- 0.230 0.060- 0.140 
i=2 2.250-2.750 1.700-2.300 0.600- 1.400 1.700- 2.300 1.200- 2.800 
i=3 0.180-0.220 0.170-0.230 0.600- 1.400 0.425- 0.575 0.300- 0.700 
i=4 1.800-2.200 4.250-5.750 6.000-14.00 8.500-11.50 6.000-14.00 
i=5 0.450-0.550 0.425-0.575 0.150- 0.350 0.425- 0.575 0.150- 0.350 
i=6 0.900-1.100 1.700-2.300 0.300- 0.700 1.700- 2.300 0.300- 0.700 
i=7 0.900-1.100 4.250-5.750 1.200- 2.800 4.250- 5.750 1.200- 2.800 
i=8 1.0 1.0 1.0 1.0 1.0 

draw general conclusions about risk for these alternatives, the overlapping rat- 
ing domains make it very difficult to identify even a distinct ordinal preference 
hierarchy. To emphasize this point, the non-uniqueness of ratings in the range 
of 0.116 to 0.161 has been highlighted on Fig. 1. Note that ratings for 7 of the 
8 decision variables could fall within this range and are therefore indistinguish- 
able from one another. 

4. Probabilistic set membership functions for fuzzy information 

The rating extremes of Table 3 and Fig. 1 are infallible in the sense that, 
given the raw data, it is not mathematically possible for ratings to fall beyond 
the computed bounds (Ri(min) <&<&(max); V’i=l,I). The advantages of 
being able to conduct risk analysis while being honest about information qual- 
ity are obvious. The resulting ratings can also be inconvenient (as in this ex- 
ample) if they suffer from strong non-uniqueness. This cannot always be 
avoided. Figure 1 also presents the deterministic ratings implied if all uncer- 
tain data are assigned a deterministic value midway between their set bounds. 
Although some of the distinctions between alternatives become more obvious 
(clearly #4 receives the highest rating and #5 receives the lowest rating) the 
differences between #3 and #7 or #l and #8 remain practically indistinguishable. 

It is always possible that a fuzzy rating (fii) should be assigned one of its 
theoretical extremes. It is also intuitively obvious that this possibility is very 
unlikely. For this to occur for any variable of the example problem, each of 40 
fuzzy coefficients must take on a specific extreme value. Furthermore, the OC- 
currence of an extreme rating ( Ri ( min) or Ri (max ) ) for one variable precludes 
the occurrence of this same extreme for any other variables. 

To quantify the probability of a decision variable taking on one of its theo- 
retical extremes it is necessary to depart from the original fuzzy set concept of 
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0 Deterministic Rating Based on the Mean 
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Fig. 1. Example “fuzzy” decision variable rating exhibiting strong non-uniqueness. 

TABLE 3 

Rating bounds implied by the example fuzzy DARE analysis problem 

Decision variable Rating bounds Decision variable Rating bounds 

i=l 0.022-0.161 i=5 0.019-0.067 
i=2 0.059-0.366 i=6 0.046-0.209 
i=3 0.045-0.240 i=7 0.048-0.358 
i=4 0.116-0.405 i=8 0.023-0.241 

Zadeh (1965) and associate probability (P) with set membership. One very 
simple approach for this is to assume that fuzzy variables are discrete and must 
take one of their set bounds. 

P(W~)+P(Wf)=l.O Vj= l,J (18) 

P(U,) +P(u;) =l.O Vi=l,(I-1) ; j=l,J (19) 

If it is further assumed that all probabilities are equal, the probability of any 
rating (~j) taking on one of its theoretical extremes is given by eqn. (20). 
Clearly although this is possible, it is also negligible as a practical consideration. 

P[(I?~=R,(min))U(Ri=Ri(max))]=2(0.50)40~2.0X10W’2 (20) 

The discrete binary probabilistic membership model of eqns. ( 18) and (19 ) 
is simple, but plausible for some applications. Consider that two different an- 
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alytical models or two independent field measurements might be available to 
develop a ratio comparison U,, and this might be the only information avail- 
able. It would not be unreasonable to assume that one of the values is correct. 
It might even be illogical or mathematically incorrect to consider intermediate 
values (such as the average of the two integer values) if they do not or could 
not exist. However, without knowledge of which datum is correct, one would 
have to assign some probability of correctness to each. This may also be gen- 
eralized to any number of discrete intermediate values (see Fig. 2 ). 

It is often more realistic to consider any “known” value as the sample of a 
continuous random variable. When ~j and Oij are assumed to be continuous, 
the alternatives for quantifying set membership expand considerably. Exam- 
ple continuous membership models appropriate for DARE analysis are illus- 
trated in Fig. 2. 

The example computations presented are based on the uniform Probability 
Density Function (PDF) membership concept of Fig. 2. Given no additional 
information except that the variable is random and bounded, the uniform 
probability density is the simplest assumption. It is also easy to visualize sit- 
uations where symmetric, nonlinear PDF’s (Gaussian, Student’s t, Laplace, 
etc.) would be more appropriate to quantify randomness. These often apply 
when non-systematic randomness is imparted by imperfect measurement. It 
is also quite plausible that skewed PDF’s (i.e. beta, gamma, Johnson’s, chi 
square, Gumbel, Weibull, Rayleigh, F, exponential, etc.) could apply in more 
subjective applications or where systematic errors skew results. The reader is 

Discrete Set Membership Zp(Uiik)=l.D 
. k ~2 

1 

P(lJijk) 
t 1 f 

Uii K Values Of Uij Uij’ 

Continuous Variable Set Membership 

Fig. 2. Schematic illustration of PDF alternatives for probabilistic set membership. 
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directed to the excellent works of Johnson and Kots (1970) for a thorough 
presentation of the classical mathematics of PDF’s. 

5. Example “fallible” solutions for bounded set fuzziness 

To illustrate the potential of probabilistic DARE approaches to hazardous 
waste risk analysis, let the example problem statement be modified by speci- 
fying a uniform probability density across all fuzzy data sets. This requires no 
new “raw” information, but implies that the fuzzy coefficients (~j, IYij) are 
continuous, uniformly distributed random variables bounded by the upper and 
lower limits of Tables 1 and 2. Unfortunately, although the problem extension 
into probabilistic set membership is easily accomplished, its solution is not. 

For the purpose of this discussion, numerical solutions were generated by 
“brute force” Monte Carlo simulation (see :Kalos and Whitlock, 1986; Sobol, 
1974). Brute-force simulation implies that no problem specific information or 
dynamic statistical analyses were applied to accelera_te solution convergence. 
For each Monte Carlo realization, random weights ( Wj) and ratio evaluations 
( oij) were sampled by scaling randomly generated uniform variates. Uniform 
variates were generated using the pseudo-random linear congruential genera- 
tor technique of Lehmuer (see Hoaglin, 1983) with coefficients as recom- 
mended by Gordon (1978). This will be referred to as a “fallible” solution of 
the rating problem since there is always some possibility (albeit small) of the 
ratings falling beyond the computed results. 

Figure 3 presents histograms of & computed from 10,000 Monte Carlo re- 
alizations of the example problem. Histograms were quantified as dynamic 
summations by dividing the infallible rating domain (R; (max) -R; (min ) ; 
Vi = 1,1) into 50 discrete intervals. Although this fails to maximize resolution, 
it does avoid the necessity of saving the huge volume of realization data, and 
yields accuracy sufficient for most practical applications. The now vertical, 
non-unique rating regime of Fig. 1 [0.116<&< 0.1611 has also been empha- 
sized. From Fig. 3 it is clear that, although it is theoretically possible for any 
variable except #5 to yield a rating in the non-unique regime, it is very improb- 
able (P< 0.06) that the rating for any alternative except #3 or #7 actually 
belongs in this range. 

Table 4 provides a comparison of the infallible rating bounds and the bounds 
required to contain the 10,000 fallible realizations of Fig. 3. Note that for all 
decision variables the bounds may be reduced by over 50 percent. Although 
this data is not sufficient to determine the probability of error (i.e. of a rating 
falling beyond a fallible bound), it must be a small number somewhere in the 
neighborhood of l/10,000. 

The results of Table 4 clearly demonstrate the major point of this paper. The 
infallible bounds computed by the algorithm of Jennings and Suresh ( 1986a 1 
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Histograms for 10,000 Realization 
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Nondimensional DARE Cardinal Rating 

Fig. 3. Histogram approximations of probabilistic DARE ratings. 

TABLE 4 

Comparison between infallible and fallible rating bounds 

Alternative Infallible bounds Fallible bounds* Range (%)** 

i=l 0.022-0.161 0.048-0.106 41.7 
i=2 0.059-0.:366 0.134-0.264 42.3 
i=3 0.045-0.240 0.088-0.176 45.1 
i=4 0.116-0.405 0.190-0.300 38.1 
i=5 0.019-0.067 0.028-0.045 35.4 
i=6 0.046-0.209 0.068-0.138 42.9 
i=7 0.048-0.358 0.087-0.232 46.8 
i=8 0.023-0.241 0.044-0.140 44.0 

*Bounds containing R, for 10,000 Monte Carlo realizations. 
*Percent of infallible range occupied by the fallible range. 

yield very conservative answers. If one is willing to tolerate a small probability 
of error, these bounds can be substantially reduced. 

The Monte Carlo solution technique applied here also implies additional 
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Fig. 4. Convergence to the mean rating of k’, as a function of Monte Carlo realizations. 
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TABLE 5 

Statistics * based on the first four moments of Bi 

Alternative 

i=l 
i=2 
i=3 
i=4 
i=5 
i=6 
i=7 
i=8 

Mean (,u) Deviation (0) 

0.075 0.009 
0.199 0.021 
0.128 0.014 
0.241 0.016 
0.036 0.003 
0.100 0.009 
0.143 0.020 
0.078 0.013 

Skewness ( fll ) Kurtosis ( /I2 ) 

0.304 2.99 
0.109 2.78 
0.260 2.99 
0.136 2.94 
0:230 2.96 
0.296 3.03 
0.370 3.03 
0.574 3.36 

*Computed from 100,000 Monte Carlo realizations. 

questions and potential difficulties. The motivation for the algorithms of Jen- 
nings and Suresh (1986a) was to provide fast solutions to support microcom- 
puter-based, user-interactive analysis. Solutions requiring large numbers of 
realizations hardly satisfy this criterion. The 10,000 realizations of Fig. 3 re- 
quired approximately 20 minutes of PC-AT computer time using a reasonable 
efficient implementation program. Solutions based on 100,000 realizations re- 
quired in excess of 3 hours. Computation times would be much larger for more 
extensive problems. Times of this magnitude often preclude microcomputer 
use, and would certainly eliminate user-interactive activities. 

To investigate the sensitivity of Monte Carlo solutions to the number of 
realizations, and to explore possibilities for solution alternatives, the first four 
moments (My, V w = 1,4; i= 1,I) were computed for all risk realizations. Four 
accurate moments are sufficient to distinguish between most common, but not 
all continuous PDF’s (Pearson, 1963 ). These moments may be computed from 
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Fig. 9. Results of Beta function calibration (Harr, 1987). 

the running totals (Z on n = 1,N realizations ) implied in the right-hand-most 
equalities of eqns. (al)- (24). Here Ri,, represents the nth realization of the 
random variable &. Note that eqns. (21)- (24) allow moments to be evaluated 
without storing realization data. 

Mi =Z-R,,,/N ; Vi=l,I (21) 

My =o: =C(Ri,, -_rU;)2/N=Z-(R;,,)2/N-~~; Vi=l,I (22) 

M? =C(Ri,,-_~)3/N=C(Ri,,)3/N-3~iC(Ri,,)2/N+2~B ; ‘Ji=l,I (23) 
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M: =C(&, -,Q4/N 

=C(Ri,,)4/N-4~iC(Ri,,)3/N+6~~C(R~,,)2/N-3~~ 

Mean: pi =M; v’i= 1,I 

Standard deviation: ts, = ( MF)0.5 v’i= 1,1 

Skewness: /31,i=M:/(MP)3/2 Vi=l,I 

Kurtosis: Pz,i=M4/(M?)2 Vi= 1,I 

(24) 

(25) 

(26) 

(27) 

(553) 

Figures 4 through 7 present data on convergence to the mean, standard de- 
viation, skewness and kurtosis of the rating of alternative #4 as a function of 
the number of realizations attempted. Each point on these figures corresponds 
to an individual simulation of 100 d Nd 100,000 realizations. Replicates at each 
N indicate accuracy. Results as N +oo indicate convergence. Note that accu- 
racy deteriorates in the direction of higher moments and at different rates for 
odd and even orders. Many more realizations would be required if answers 
depend upon accurate propagation of higher moments. Table 5 presents values 
for the first four moments computed from 100,000 realizations. Observe that, 
although it is not evident in the histograms of Fig. 3, all results fail to satisfy 
the Gaussian distribution (skewness 0.0, kurtosis 3.0) and are skewed to the 
right (skewness > 0). 

The skewness and kurtosis can be helpful in inferring a random variable’s 
parent density function. Figure 8 illustrates the data of Table 5 plotted as a 
“Moment-Ratio” diagram in the neighborhood of the normal point (3.0) (see 
Johnson et al., 1963; McCuen, 1985; Pearson, 1963; Pearson and Hartley, 1972). 
The uniform distribution that defined all raw data is also a point in this space 
at ( p1 = 0.0, /& = 1.8) but does not appear on Fig. 8 because of the scales se- 
lected. All results for the eight decision variables plot in the domain of a Pear- 
son Type 1 distribution which subsumes the Beta distribution (Johnson and 
Kotz, 1970). This is significant because, given deterministic bounds [a&], the 
Beta PDF may be calibrated using only the first two moments ( p,a2 ). 

Beta PDF: f (5) = 
(cx+j?+l)!(&a)“(b-<)fi 

CY!P!(b-o)“+++l 

a(p,o)= [(~-dl(~-~H2{l- [(P-M~-a)l~_il 

[cJl(b---a) I” 
- [(p-d/w-a) I) (30) 

P(lw) = 
(a+11 (b--a) _ (a+2) 

(31) 
w-a 

It is very interesting to speculate that if probabilistic DARE analysis based 
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on uniform PDF set membership always produced Beta distributed answers, 
then answer density functions could be calibrated using far fewer realizations. 
This could greatly accelerate the speed of microcomputer implementations. 
Figure 9 illustrates the results of a Beta PDF calibration for the example prob- 
lem. As one should expect, all points plot in the regime of right hand skew 
(Harr, 1987), and intriguingly close to the uniform distribution point. Once 
the essential coefficients (cr&,a;,b;) have been computed with sufficient ac- 
curacy, all ranking probabilities may be computed directly from the integration 
of eqn. (29) without further numerical simulation. 

6. Summary and conclusion 

DARE risk analysis has proven to be a very useful tool for overcoming many 
of the quandaries of hazardous waste risk analysis. Although the technique 
yields relative rather than absolute values on a nondimensional risk scale, the 
results are sufficient to resolve many of the essential questions of hazardous 
waste management planning. 

One of the more compelling difficulties of hazardous waste risk analysis is 
the management of uncertain information. Although there has been an intense 
concentration on nearly all aspects of hazardous wastes in the 1980’s, knowl- 
edge has evolved (i.e. changed) so rapidly that it is difficult to distinguish fact 
from fallacy. Because of this, it is imperative that risk analyses acknowledge 
and accommodate uncertainty in the “facts” upon which they are based. 

Jennings and Suresh (1986a) have presented microcomputer-based algo- 
rithms for accomplishing DARE risk analysis in the face of information un- 
certainty. Their bounded fuzzy set approach is capable of yielding infallible 
bounds around the implied risk ratings. U:nfortunately, when the degree of 
information uncertainty is high, bounded set analysis can suffer from strong 
non-uniqueness resulting from the very conservative nature of infallibility. 
The procedures presented here attempt to extract more information about the 
practicalities of implied ratings by introducing a small probability of error. It 
has been illustrated that by adopting a model for probabilistic set membership, 
the implied risk ratings can be substantially refined. Although the introduction 
of potential error may seem to be a poor idea, risk analyses are, at their very 
best, only approximations. Even if all of the information used is precise, there 
is no guarantee that it is complete. Mathematic infallibility only yields the 
illusion of being correct. 

The solution presented here does not resolve all remaining difficulties of 
probabilistic risk analysis. First, the user must be able to associate a density 
function with set membership. As illustrated in Fig. 3, there are many alter- 
natives for this and one may not know a priori which is correct. Also, once 
probabilistic set membership has been defined, the analyst is faced with a sub- 
stantially more difficult mathematical problem than that of bounded set anal- 
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ysis. The example solution presented here was based on homogeneous uniform 
distributions. Far more complex combinations of membership treatment are 
possible. Finally, although solutions may be generated by Monte Carlo simu- 
lations, the computational effort required for complex problems is of concern. 
More sophisticated solution implementation strategies will be required before 
probabilistic DARE analysis can be conveniently implemented. 
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